Phylogenetically informed analysis of the allometry of Mammalian Basal metabolic rate supports neither geometric nor quarter-power scaling.
نویسندگان
چکیده
The form of the relationship between the basal metabolic rate (BMR) and body mass (M) of mammals has been at issue for almost seven decades, with debate focusing on the value of the scaling exponent (b, where BMR is proportional to M(b)) and the relative merits of b= 0.67 (geometric scaling) and b= 0.75 (quarter-power scaling). However, most analyses are not phylogenetically informed (PI) and therefore fail to account for the shared evolutionary history of the species they consider. Here, we reanalyze the most rigorously selected and comprehensive mammalian BMR dataset presently available, and investigate the effects of data selection and phylogenetic method (phylogenetic generalized least squares and independent contrasts) on estimation of the scaling exponent relating mammalian BMR to M. Contrary to the results of a non-PI analysis of these data, which found an exponent of 0.67-0.69, we find that most of the PI scaling exponents are significantly different from both 0.67 and 0.75. Similarly, the scaling exponents differ between lineages, and these exponents are also often different from 0.67 or 0.75. Thus, we conclude that no single value of b adequately characterizes the allometric relationship between body mass and BMR.
منابع مشابه
Mammalian basal metabolic rate is proportional to body mass2/3.
The relationship between mammalian basal metabolic rate (BMR, ml of O(2) per h) and body mass (M, g) has been the subject of regular investigation for over a century. Typically, the relationship is expressed as an allometric equation of the form BMR = aM(b). The scaling exponent (b) is a point of contention throughout this body of literature, within which arguments for and against geometric (b ...
متن کاملA Sceptics View: "Kleiber's Law" or the "3/4 Rule" is neither a Law nor a Rule but Rather an Empirical Approximation
Early studies showed the metabolic rate (MR) of different-sized animals was not directly related to body mass. The initial explanation of this difference, the “surface law”, was replaced by the suggestion that MR be expressed relative to mass n , where the scaling exponent “n” be empirically determined. Basal metabolic rate (BMR) conditions were developed and BMR became important clinically, es...
متن کاملThe predominance of quarter-power scaling in biology
1. Recent studies have resurrected the debate over the value for the allometric scaling exponent that relates whole-organism metabolic rate to body size. Is it 3 / 4 or 2 / 3 ? This question has been raised before and resolved in favour of 3 / 4 . Like previous ones, recent claims for a value of 2 / 3 are based almost entirely on basal metabolic rate (BMR) in mammals. 2. Here we compile and ana...
متن کاملDinosaur Metabolism and the Allometry of Maximum Growth Rate
The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometri...
متن کاملTraditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates.
The field of biological allometry was energized by the publication in 1997 of a theoretical model purporting to explain 3/4-power scaling of metabolic rate with body mass in mammals. This 3/4-power scaling exponent, which was first reported by Max Kleiber in 1932, has been derived repeatedly in empirical research by independent investigators and has come to be known as 'Kleiber's Law'. The expo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 63 10 شماره
صفحات -
تاریخ انتشار 2009